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March 3,1997

Hi Qiang,

Sorry it took so long to respond to your request for more information. It took
longer than I anticipated to piece together everything that I had done. What
follows is a description of my analysis.

First, the FFT that I use is described on the attached pages. Note that the
scaling factor for the forward transform is 1/N.

I compute the following rms values:
rms(original data) = 64.9463 nm
rms(data*hanning) = 55.7723 nm (before renormalization)

The use of the banning filter is accompanied by a renormalization to insure
that the rms value is maintained.

I also fit to the curvature of the scan. The data corrected for focus gives the
following rms values:
rms(corrected data) = 56.8835 nm
rms(corrected data*hanning) = 53.2179 nm (before renormalization)

The PSD is shown for various data. The PSD is calculated as:
PSD= lFT7T(y)lA2*xl
where xl is the length of the x axis, 45.9952.

I did find an error in the plot that you were sent. If kx is the frequency axis,
i.e., values from (O,Nyquist), then kx(l,Nyquist) is plotted versus
PSD(O,Nyquist). This error is corrected in the attached plots. The plot you
have appears to be the PSD of the original data with no banning applied.

The removal of the quadratic term appear to have a negligible effect on the
PSD. It changes only the first couple of terms (which lie outside of the data
valid range). The removal of the center feature has a much stronger effect.
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FFT

The FFI’ function returns a result equal to the complex, discrete Fourier transform of
Array. The result of this function is a single- or double-precision complex array.

The discrete Fourier transform, F’(u), of an N-element, one–dimensional function, j(x), is
defined as:

And the inverse transform, (Direction > O), is defined as:
—.

M-1

)(x).= ~ W@=p [j2mLK/N]
U=tl

If the keyword OVERWRITE is set, the transform is performed in–place, and the result
overwrites the original contents of the array.

The result returned by FFT is a complex array that has the same dimensions as the input
array. The output array is ordered in the same manner as almost all discrete Fourier
transforms. Element Ocontains the zero frequency component, FO. F1 contains the
smallest non–zero positive frequency, which is equal to l/(NT) where N is the number of
elements in the respective dimension and T is the sampling interval. F2 corresponds to a
frequency of 2/(NT). FN/2 contains the component corresponding to the Nyquist
frequency, l/(2T), which is the highest frequency that can be sampled.

Negative frequencies are stored in reverse order from FN-1, FN–2, .... FN/2+1,
corresponding to frequencies of -l/NT, –2/NT, and –(N/2 – 1)/NT, respectively.

Calling Sequence
Result = FFT(Array [, Directionfi

Arguments

Array
The array to which the Fast Fourier Transform should be applied. If Array is not of
complex type, it is converted to complex type. The dimensions of the result are
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identical to those of Array. The size of each dimension maybe any integer value
and does not necessarily have to be an integer power of 2, although powers of 2 are
certainly the most efficient.

Direction
Direction is a scalar indicating the direction of the transform, which is negative by
convention for the forward transform, and positive for the inverse transform. If
Direction is not specified, the forward transform is performed.

A normalization factor of I/N, where N is the number of points, is applied during
the forward transform.

Note: When transforming from a real vector to complex and back, it is slightly
faster to set Direction to 1 in the real to complex FFI’.

Note also that the value of Direction is ignored if the INVERSE keyword is set.

Keywords

DOUBLE
Set this keyword to a value other than zero to force the computation to be done in
double–precision arithmetic, and to give a result of double–precision complex type.
If DOUBLE is set equal to zero, computation is done in single–precision arithmetic
and the result is single–precision complex. If DOUBLE is not specified, the data
type of the result will match the data type of Array.

iNVERSE
Set this keyword to perform an inverse transform. Setting this keyword is equivalent
to setting the Direction argument to a positive value. Note, however, that setting
INVERSE results in an inverse transform even if Direction is specified as negative.

OVERWRiTE
If this keyword is set, and the Array parameter is a variable of complex type, the
transform is done “in-place”. The result overwrites the previous contents of the
variable. For example, to perform a forward, in-place FFI’ on the variable a:

a= FFT (a, -1, /OVERWRITE)

Running Time
For a one–dimensional I?H’, running time is roughly proportional to the total number of
points in Array times the sum of its prime factors. Let N be the total number of elements
in Array, and decompose N into its prime factors:
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Running time is proportional to:

TO+ M[T1+2K2T2 +T3[3K3+5K5+...]]

where T3 -422. For example, the running time of a 263 point ITT is approximately 10
times longer than that of a 264 point FIW, even though there are fewer points. The sum of
the prime factors of 263 is 264 (1 + 263), while the sum of the prime factors of 264 is 20
(2+2+2+3+11).

Example
Display the log of the power spectrum of a 100-element index array by entering:

PLOT, /YLOG, ABS(FFT( FINDGEN(1OO) , -1) )

As a more complex example, display the power spectrum of a 100–element vector

sampled at a rate of 0.1 seconds per point. Show the Ofrequency component at the center
of the plot and label the abscissa with frequency:

N =100 Define the number of points.

T = 0.1 Define the interval.

N21 =N/2+1 A4idpoint+l is the most negative frequency
subscript.

F= INDGEN (N) The array of subscripts.

F(N21) = N21 –N + FINDGEN(N21 –2 ) Insert negative frequencies in elements
F(N~ +1), .... F(N-1).

F= F/ (N*T) Compute TOfrequency.

PLOT, /YLOG, SHIFT (F , -N21) , SHIFT (ABS(FFT(Y, –1) ) , -N21)
Shift so that the most negative frequency is plotted
jirst.

See Also
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